Trigonometry for Physics

Triangle Properties

The 3 angles of a triangle add up to 180°.

A <u>right</u> triangle has a 90° angle.

An <u>isosceles</u> triangle has 2 sides and angles that are equal.

An equilateral triangle has 3 angles the same (60°) and 3 sides the same.

Supplementary Angles

The angle of a straight line is 180°. Supplementary angles add to 180°.

$$a + b = 180^{\circ}$$
 $c + d = 180^{\circ}$
 $a + c = 180^{\circ}$ $b + d = 180^{\circ}$

Z Rule

a's are equal b's are equal

SOH CAH TOA

Right triangles only!!

$$Sin \Theta = \underbrace{opp}_{hyp} \quad Cos \Theta = \underbrace{adj}_{hyp} \quad Tan \Theta = \underbrace{opp}_{adj}$$

Can rearrange these to find adj, opp or hyp

Pythagorean Theorem

$$hyp^2 = adj^2 + opp^2$$

or $c^2 = a^2 + b^2$ where c is the hypotenuse

Cosine Law

For triangles that are not right triangles Large A B C are angles Small a b c are sides — side a is across from A, across from B Etc.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $b^2 = a^2 + c^2 - 2ac \cos B$
 $c^2 = a^2 + b^2 - 2ab \cos C$
Can be rearranged for the angles.

Sine Law
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
 or

Quadratic Formula

For $ax^2 + bx + c$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$